Your browser doesn't support javascript.
loading
Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from Methylopila sp. M107 and its broad metal selectivity.
Xiao, Ying; Wu, Kaijuan; Batool, Syeda Sundas; Wang, Qingqun; Chen, Hao; Zhai, Xingyu; Yu, Zheng; Huang, Jing.
Afiliação
  • Xiao Y; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Wu K; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Batool SS; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Wang Q; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Chen H; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Zhai X; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Yu Z; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
  • Huang J; Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
Front Microbiol ; 14: 1191436, 2023.
Article em En | MEDLINE | ID: mdl-37560521
As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article