Your browser doesn't support javascript.
loading
Regulation of plasma glucose levels by central dopamine D2 receptors is impaired in type 1 but not type 2 diabetic mouse models.
Ikeda, Hiroko; Mikami, Risa; Yonemochi, Naomi; Waddington, John L.
Afiliação
  • Ikeda H; Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. Electronic address: h-ikeda@hoshi.ac.jp.
  • Mikami R; Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
  • Yonemochi N; Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
  • Waddington JL; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 111 St Stephen's Green, Dublin 2, Ireland.
Eur J Pharmacol ; 956: 175984, 2023 Oct 05.
Article em En | MEDLINE | ID: mdl-37567458
ABSTRACT
Glucose metabolism is reported to be regulated by the central nervous system, but it is unclear whether this regulation is altered in diabetes. We investigated whether regulation of glucose metabolism by central dopamine D2 receptors is altered in type 1 and type 2 diabetic models. Intracerebroventricular injections of both the dopamine D2 receptor agonist quinpirole and the antagonist l-sulpiride induced hyperglycemia in control mice, but not in streptozotocin (STZ)-induced diabetic mice, a type 1 diabetic model. Hyperglycemia induced by quinpirole or l-sulpiride was diminished following fasting and these drugs did not affect hyperglycemia in the pyruvate tolerance test. In addition, both quinpirole and l-sulpiride increased hepatic glucose-6-phosphatase (G6Pase) mRNA. In STZ-induced diabetic mice, dopamine and dopamine D2 receptor mRNA in the hypothalamus, which regulates glucose homeostasis, were decreased. Hepatic glycogen and G6Pase mRNA were also decreased in STZ-induced diabetic mice. Neither quinpirole nor l-sulpiride increased hepatic G6Pase mRNA in STZ-induced diabetic mice. In diet-induced obesity mice, a type 2 diabetic model, both quinpirole and l-sulpiride induced hyperglycemia, and hypothalamic dopamine and dopamine D2 receptor mRNA were not altered. These results indicate that (i) stimulation or blockade of dopamine D2 receptors causes hyperglycemia by increasing hepatic glycogenolysis, and (ii) stimulation or blockade of dopamine D2 receptors does not affect glucose levels in type 1 but does so in type 2 diabetic models. Moreover, hypothalamic dopaminergic function and hepatic glycogenolysis are decreased in the type 1 diabetic model, which reduces hyperglycemia induced by stimulation or blockade of dopamine D2 receptors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Experimental / Diabetes Mellitus Tipo 1 / Hiperglicemia Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Experimental / Diabetes Mellitus Tipo 1 / Hiperglicemia Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article