Combination of mineral protection and molecular characteristics rather than alone to govern soil organic carbon stability in Qinghai-Tibetan plateau wetlands.
J Environ Manage
; 344: 118757, 2023 Oct 15.
Article
em En
| MEDLINE
| ID: mdl-37573695
Wetlands in the Yarlung Tsangpo River Basin (YTR) on the Qinghai-Tibet Plateau provide immense soil organic carbon (SOC) storage, which is highly susceptible to climate warming and requires urgent deciphering SOC stabilization mechanisms of long-term protection of SOC against decomposition. Conflicting views exist regarding whether persistent SOC is controlled by molecular features or by mineral protection. As such, this study quantified SOC stability using two thermal indices (TG-T50, and DSC), described molecular features of SOC using pyrolysis-gas chromatography-mass spectrometry, and measured SOC protection by minerals using a chemical extraction method. Results indicated SOC of topsoils had higher thermal stability, with TG-T50 and DSC-T50 of 337.61 °C and 384.58 °C, than that of subsoils with TG-T50 and DSC-T50 of 337.32 and 382.67 °C, respectively. We found subsoils had significantly higher proportions of aliphatic and aromatic compounds, while existed higher SOC associated with minerals. It seemed SOC stabilization differed with soil depths, in which mineral protection dictated SOC thermal stability in topsoils while molecular features posed a more important constraint on SOC stabilization in subsoils. Overall, our findings support the hypothesis of physical and chemical protection but emphasized that SOC thermal stability largely depended on to extent of the combination between molecular features and mineral protection, which explained 55% in topsoils and 73% in subsoils, respectively.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Solo
/
Carbono
País/Região como assunto:
Asia
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article