AI-support for the detection of intracranial large vessel occlusions: One-year prospective evaluation.
Heliyon
; 9(8): e19065, 2023 Aug.
Article
em En
| MEDLINE
| ID: mdl-37636476
Purpose: Few studies have evaluated real-world performance of radiological AI-tools in clinical practice. Over one-year, we prospectively evaluated the use of AI software to support the detection of intracranial large vessel occlusions (LVO) on CT angiography (CTA). Method: Quantitative measures (user log-in attempts, AI standalone performance) and qualitative data (user surveys) were reviewed by a key-user group at three timepoints. A total of 491 CTA studies of 460 patients were included for analysis. Results: The overall accuracy of the AI-tool for LVO detection and localization was 87.6%, sensitivity 69.1% and specificity 91.2%. Out of 81 LVOs, 31 of 34 (91%) M1 occlusions were detected correctly, 19 of 38 (50%) M2 occlusions, and 6 of 9 (67%) ICA occlusions. The product was considered user-friendly. The diagnostic confidence of the users for LVO detection remained the same over the year. The last measured net promotor score was -56%. The use of the AI-tool fluctuated over the year with a declining trend. Conclusions: Our pragmatic approach of evaluating the AI-tool used in clinical practice, helped us to monitor the usage, to estimate the perceived added value by the users of the AI-tool, and to make an informed decision about the continuation of the use of the AI-tool.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Qualitative_research
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article