Your browser doesn't support javascript.
loading
Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation.
Ning, Shen; Sanchis-Gual, Roger; Franco, Carlos; Wendel-Garcia, Pedro D; Ye, Hao; Veciana, Andrea; Tang, Qiao; Sevim, Semih; Hertle, Lukas; Llacer-Wintle, Joaquin; Qin, Xiao-Hua; Zhu, Caihong; Cai, Jun; Chen, Xiangzhong; Nelson, Bradley J; Puigmartí-Luis, Josep; Pané, Salvador.
Afiliação
  • Ning S; Boston University School of Medicine, Boston, MA, USA.
  • Sanchis-Gual R; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Franco C; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Wendel-Garcia PD; Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland.
  • Ye H; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Veciana A; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Tang Q; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Sevim S; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Hertle L; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Llacer-Wintle J; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Qin XH; Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, CH-8093 Zürich, Switzerland.
  • Zhu C; School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
  • Cai J; School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
  • Chen X; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Nelson BJ; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland. carlos.franco@chem.ethz.ch.
  • Puigmartí-Luis J; Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), 08028 Barcelona, Spain. josep.puigmarti@ub.edu.
  • Pané S; ICREA, Institució Catalana de Reserca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
Nanoscale ; 15(36): 14800-14808, 2023 Sep 21.
Article em En | MEDLINE | ID: mdl-37646185
ABSTRACT
Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation. To address these limitations, our study proposes to load these functional nanomaterials on a multifunctional mobile microrobot (PiezoBOT). This microrobot is designed by coating magnetic and piezoelectric barium titanate nanoparticles on helical biotemplates, allowing for the combination of magnetic navigation and ultrasound-mediated piezoelectric effects to target amyloid disaggregation. Our findings demonstrate that acoustically actuated PiezoBOTs can effectively reduce the size of aggregated amyloid proteins by over 80% in less than 10 minutes by shortening and dissociating constituent amyloid fibrils. Moreover, the PiezoBOTs can be easily magnetically manipulated to actuate the piezocatalytic nanoparticles to specific amyloidosis-affected tissues or organs, minimizing side effects. These biocompatible PiezoBOTs offer a promising non-invasive therapeutic approach for amyloidosis diseases by targeting and breaking down protein aggregates at specific organ or tissue sites.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Nanopartículas / Amiloidose Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Nanopartículas / Amiloidose Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article