Your browser doesn't support javascript.
loading
Near Room-Temperature Intrinsic Exchange Bias in an Fe Intercalated ZrSe2 Spin Glass.
Kong, Zhizhi; Kaminsky, Corey J; Groschner, Catherine K; Murphy, Ryan A; Yu, Yun; Husremovic, Samra; Xie, Lilia S; Erodici, Matthew P; Kim, R Soyoung; Yano, Junko; Bediako, D Kwabena.
Afiliação
  • Kong Z; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Kaminsky CJ; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Groschner CK; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Murphy RA; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Yu Y; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Husremovic S; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Xie LS; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Erodici MP; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Kim RS; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Yano J; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Bediako DK; Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Am Chem Soc ; 145(36): 20041-20052, 2023 Sep 13.
Article em En | MEDLINE | ID: mdl-37646536
ABSTRACT
Some magnetic systems display a shift in the center of their magnetic hysteresis loop away from zero field, a phenomenon termed exchange bias. Despite the extensive use of the exchange bias effect, particularly in magnetic multilayers, for the design of spin-based memory/electronics devices, a comprehensive mechanistic understanding of this effect remains a longstanding problem. Recent work has shown that disorder-induced spin frustration might play a key role in exchange bias, suggesting new materials design approaches for spin-based electronic devices that harness this effect. Here, we design a spin glass with strong spin frustration induced by magnetic disorder by exploiting the distinctive structure of Fe intercalated ZrSe2, where Fe(II) centers are shown to occupy both octahedral and tetrahedral interstitial sites and to distribute between ZrSe2 layers without long-range structural order. Notably, we observe behavior consistent with a magnetically frustrated and multidegenerate ground state in these Fe0.17ZrSe2 single crystals, which persists above room temperature. Moreover, this magnetic frustration leads to a robust and tunable exchange bias up to 250 K. These results not only offer important insights into the effects of magnetic disorder and frustration in magnetic materials generally, but also highlight as design strategy the idea that a large exchange bias can arise from an inhomogeneous microscopic environment without discernible long-range magnetic order. In addition, these results show that intercalated TMDs like Fe0.17ZrSe2 hold potential for spintronic technologies that can achieve room temperature applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article