Your browser doesn't support javascript.
loading
Deposition behaviors of carboxyl-modified polystyrene nanoplastics with goethite in aquatic environment: Effects of solution chemistry and organic macromolecules.
Xie, Ruiyin; Xing, Xiaohui; Nie, Xin; Ma, Xunsong; Wan, Quan; Chen, Qingsong; Li, Zixiong; Wang, Jingxin.
Afiliação
  • Xie R; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Ins
  • Xing X; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
  • Nie X; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China. Electronic address: niexin2004@163.com.
  • Ma X; School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China.
  • Wan Q; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
  • Chen Q; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
  • Li Z; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
  • Wang J; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China. Electronic address: wjxdaxue@163.com.
Sci Total Environ ; 904: 166783, 2023 Dec 15.
Article em En | MEDLINE | ID: mdl-37666342
ABSTRACT
The ubiquitous nanoplastics (NPs) in the environment are emerging contaminants due to their risks to human health and ecosystems. The interaction between NPs and minerals determines the environmental and ecological risks of NPs. In this study, the deposition behaviors of carboxyl modified polystyrene nanoplastics (COOH-PSNPs) with goethite (α-FeOOH) were systematically investigated under various solution chemistry and organic macromolecules (OMs) conditions (i.e., pH, ionic type, humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA)). The study found that electrostatic interactions dominated the interaction between COOH-PSNPs and goethite. The deposition rates of COOH-PSNPs decreased with an increase in solution pH, due to the enhanced electrostatic repulsion by higher pH. Introducing cations or anions could compress the electrostatic double layers and compete for interaction sites on COOH-PSNPs and goethite, thereby reducing the deposition rates of COOH-PSNPs. The stabilization effects, which were positive with ions valence, followed the orders of NaCl ≈ KCl < CaCl2, NaNO3 ≈ NaCl < Na2SO4 < Na3PO4. Specific adsorption of SO42- or H2PO4- caused a potential reversal of goethite from positive to negative, leading to the electrostatic forces between COOH-PSNPs and goethite changed from attraction to repulsion, and thus significantly decreasing deposition of COOH-PSNPs. Organic macromolecules could markedly inhibit the deposition of COOH-PSNPs with goethite because of enhanced electrostatic repulsion, steric hindrance, and competition of surface binding sites. The ability for inhibiting the deposition of COOH-PSNPs followed the sequence of SA > HA > BSA, which was related to their structure (SA linear, semi-flexible, HA globular, semi-rigid, BSA globular, with protein tertiary structure) and surface charge density (SA > HA > BSA). The results of this study highlight the complexity of the interactions between NPs and minerals under different environments and provide valuable insights in understanding transport mechanisms and environmental fate of nanoplastics in aquatic environments.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article