Highly Flexible and Self-Healing Supercapacitor Enabled by Physically Crosslinking Polymer Hydrogel Electrolyte.
Chemistry
; 29(68): e202302355, 2023 Dec 06.
Article
em En
| MEDLINE
| ID: mdl-37681404
Preparation of flexible supercapacitors with excellent mechanical properties and self-healing properties is of great significance but still remains a challenge. A self-healable conductive hydrogel based on poly N-hydroxyethyl acrylamide (PHEAA) is fabricated as electrolyte for supercapacitors. The design of the physically cross-linked dual network, and rich hydrogen bonds endow the hydrogel with robust mechanical properties and strong self-healing ability. The hydrogel exhibited an excellent stretchability (723 %) and a high ionic conductivity (21.8â
mS/cm). Specially, by inâ
situ growth of electrode film, a non-laminated supercapacitor is obtained with flexibility and self-healing ability. Due to the non-laminated structure, the supercapacitor can work stably under bending and punching. The supercapacitor possessed an areal capacitance of 253.1â
mF/cm2 and the capacitance retention was 80 % after five cutting-healing cycles. The pseudo-capacitance contribution of the supercapacitor after self-healing was discussed. It is noteworthy that the supercapacitor maintains the ability to power a clock after self-healing.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article