Your browser doesn't support javascript.
loading
An integrated approach to evaluate the functional effects of disease-associated NMDA receptor variants.
Moody, Gabrielle; Musco, Angela; Bennett, Joseph; Wollmuth, Lonnie P.
Afiliação
  • Moody G; Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, United States.
  • Musco A; Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5230, United States.
  • Bennett J; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, United States.
  • Wollmuth LP; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, United States; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, United States; Center for Nervous System Disorders, Stony Brook University, Stony Brook,
Neuropharmacology ; 240: 109703, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37689262
ABSTRACT
The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article