A standardized workflow for long-term longitudinal actigraphy data processing using one year of continuous actigraphy from the CAN-BIND Wellness Monitoring Study.
Sci Rep
; 13(1): 15300, 2023 09 15.
Article
em En
| MEDLINE
| ID: mdl-37714910
Monitoring sleep and activity through wearable devices such as wrist-worn actigraphs has the potential for long-term measurement in the individual's own environment. Long periods of data collection require a complex approach, including standardized pre-processing and data trimming, and robust algorithms to address non-wear and missing data. In this study, we used a data-driven approach to quality control, pre-processing and analysis of longitudinal actigraphy data collected over the course of 1 year in a sample of 95 participants. We implemented a data processing pipeline using open-source packages for longitudinal data thereby providing a framework for treating missing data patterns, non-wear scoring, sleep/wake scoring, and conducted a sensitivity analysis to demonstrate the impact of non-wear and missing data on the relationship between sleep variables and depressive symptoms. Compliance with actigraph wear decreased over time, with missing data proportion increasing from a mean of 4.8% in the first week to 23.6% at the end of the 12 months of data collection. Sensitivity analyses demonstrated the importance of defining a pre-processing threshold, as it substantially impacts the predictive value of variables on sleep-related outcomes. We developed a novel non-wear algorithm which outperformed several other algorithms and a capacitive wear sensor in quality control. These findings provide essential insight informing study design in digital health research.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Actigrafia
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article