Your browser doesn't support javascript.
loading
Assessing the impact of technological change on similar occupations: Implications for employment alternatives.
Torosyan, Karine; Wang, Sicheng; Mack, Elizabeth A; Van Fossen, Jenna A; Baker, Nathan.
Afiliação
  • Torosyan K; Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan, United States of America.
  • Wang S; International School of Economics in Tbilisi (ISET), Tbilisi State University, Tbilisi, Georgia.
  • Mack EA; Department of Geography, University of South Carolina, Columbia, South Carolina, United States of America.
  • Van Fossen JA; Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan, United States of America.
  • Baker N; Department of Psychology, Clemson University, Clemson, South Carolina, United States of America.
PLoS One ; 18(9): e0291428, 2023.
Article em En | MEDLINE | ID: mdl-37721950
BACKGROUND: The fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations. METHOD: We first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes. RESULTS: The results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years. CONCLUSION: Our results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trabalho de Parto / Emprego Tipo de estudo: Prognostic_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trabalho de Parto / Emprego Tipo de estudo: Prognostic_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2023 Tipo de documento: Article