Your browser doesn't support javascript.
loading
Cell surface plasticity in response to shape change in the whole organism.
Hall, Thomas E; Ariotti, Nicholas; Lo, Harriet P; Rae, James; Ferguson, Charles; Martel, Nick; Lim, Ye-Wheen; Giacomotto, Jean; Parton, Robert G.
Afiliação
  • Hall TE; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address: t.hall5@uq.edu.au.
  • Ariotti N; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Lo HP; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Rae J; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Ferguson C; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Martel N; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Lim YW; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Giacomotto J; Griffith Institute for Drug Discovery, Centre for Cellular Phenomics, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Parton RG; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address: r.parton@imb.uq.edu.au.
Curr Biol ; 33(19): 4276-4284.e4, 2023 10 09.
Article em En | MEDLINE | ID: mdl-37729911
ABSTRACT
Plasma membrane rupture can result in catastrophic cell death. The skeletal muscle fiber plasma membrane, the sarcolemma, provides an extreme example of a membrane subject to mechanical stress since these cells specifically evolved to generate contraction and movement. A quantitative model correlating ultrastructural remodeling of surface architecture with tissue changes in vivo is required to understand how membrane domains contribute to the shape changes associated with tissue deformation in whole animals. We and others have shown that loss of caveolae, small invaginations of the plasma membrane particularly prevalent in the muscle sarcolemma, renders the plasma membrane more susceptible to rupture during stretch.1,2,3 While it is thought that caveolae are able to flatten and be absorbed into the bulk membrane to buffer local membrane expansion, a direct demonstration of this model in vivo has been unachievable since it would require measurement of caveolae at the nanoscale combined with detailed whole-animal morphometrics under conditions of perturbation. Here, we describe the development and application of the "active trapping model" where embryonic zebrafish are immobilized in a curved state that mimics natural body axis curvature during an escape response. The model is amenable to multiscale, multimodal imaging including high-resolution whole-animal three-dimensional quantitative electron microscopy. Using the active trapping model, we demonstrate the essential role of caveolae in maintaining sarcolemmal integrity and quantify the specific contribution of caveolar-derived membrane to surface expansion. We show that caveolae directly contribute to an increase in plasma membrane surface area under physiologically relevant membrane deformation conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Cavéolas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Cavéolas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article