Your browser doesn't support javascript.
loading
Metabolic engineering and optimization of Escherichia coli co-culture for the de novo synthesis of genkwanin.
Thuan, Nguyen Huy; Tatipamula, Vinay Bharadwaj; Trung, Nguyen Thanh; Van Giang, Nguyen.
Afiliação
  • Thuan NH; Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang 550000, Vietnam.
  • Tatipamula VB; Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang 550000, Vietnam.
  • Trung NT; Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang 550000, Vietnam.
  • Van Giang N; Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy, Hanoi 100000, Vietnam.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article em En | MEDLINE | ID: mdl-37738435
ABSTRACT
Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest. This paper described recombinant Escherichia coli-based co-culture engineering that was reconstructed for the de novo production of genkwanin from d-glucose. The artificial genkwanin biosynthetic chain was divided into 2 modules in which the upstream strain contained the genes for synthesizing p-coumaric acid from d-glucose, and the downstream module contained a gene cluster that produced the precursor apigenin and the final product, genkwanin. The Box-Behnken design, a response surface methodology, was used to empirically model the production of genkwanin and optimize its productivity. As a result, the application of the designed co-culture improved the genkwanin production by 48.8 ± 1.3 mg/L or 1.7-fold compared to the monoculture. In addition, the scale-up of genkwanin bioproduction by a bioreactor resulted in 68.5 ± 1.9 mg/L at a 48 hr time point. The combination of metabolic engineering and fermentation technology was therefore a very efficient and applicable approach to enhance the production of other bioactive compounds.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article