Your browser doesn't support javascript.
loading
Predicting functional impairment in euthymic patients with mood disorder: A 5-year follow-up.
Rodrigues de Aguiar, Kyara; Braga Montezano, Bruno; Gabriel Feiten, Jacson; Watts, Devon; Zimerman, Aline; Campos Mondin, Thaíse; Azevedo da Silva, Ricardo; Dias de Mattos Souza, Luciano; Kapczinski, Flávio; de Azevedo Cardoso, Taiane; Jansen, Karen; Passos, Ives Cavalcante.
Afiliação
  • Rodrigues de Aguiar K; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
  • Braga Montezano B; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
  • Gabriel Feiten J; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
  • Watts D; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
  • Zimerman A; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
  • Campos Mondin T; Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Rua Gonçalves Chaves, 373, sala 424 C, Pelotas, RS 96015-560, Brazil; Universidade Federal de Pelotas (UFPel), Pró-Reitoria de Assuntos Estudantis, Pelotas, RS, Brazil.
  • Azevedo da Silva R; Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Rua Gonçalves Chaves, 373, sala 424 C, Pelotas, RS 96015-560, Brazil.
  • Dias de Mattos Souza L; Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Rua Gonçalves Chaves, 373, sala 424 C, Pelotas, RS 96015-560, Brazil.
  • Kapczinski F; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
  • de Azevedo Cardoso T; Center for Precision Psychiatry, MGH Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
  • Jansen K; Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Rua Gonçalves Chaves, 373, sala 424 C, Pelotas, RS 96015-560, Brazil.
  • Passos IC; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences
Psychiatry Res ; 328: 115404, 2023 10.
Article em En | MEDLINE | ID: mdl-37748239
Major Depressive Disorder and Bipolar Disorder are psychiatric disorders associated with psychosocial impairment. Despite clinical improvement, functional complaints usually remain, mainly impairing occupational and cognitive performance. The aim of this study was to use machine learning techniques to predict functional impairment in patients with mood disorders. For that, analyzes were performed using a population-based cohort study. Participants diagnosed with a mood disorder at baseline and reassessed were considered (n = 282). Random forest (RF) with previous recursive feature selection and LASSO algorithms were applied to a training set with imputed data by bagged trees resulting in two main models. Following recursive feature selection, 25 variables were retained. The RF model had the best performance compared to LASSO. The most important variables in predicting functional impairment were sexual abuse, severity of depressive, anxiety, and somatic symptoms, physical neglect, emotional abuse, and physical abuse. The model demonstrated acceptable performance to predict functional impairment. However, our sample is composed of young participants and the model may not generalize to older individuals with mood disorders. More studies are needed in this direction. The presented calculator has clinical, sociodemographic, and environmental data, demonstrating that it is possible to use such information to predict functional performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtorno Bipolar / Transtorno Depressivo Maior Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtorno Bipolar / Transtorno Depressivo Maior Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article