Your browser doesn't support javascript.
loading
The African Liver Tissue Biorepository Consortium: Capacitating Population-Appropriate Drug Metabolism, Pharmacokinetics, and Pharmacogenetics Research in Drug Discovery and Development.
Masimirembwa, Collen; Ramsay, Michele; Botha, Jean; Ellis, Ewa; Etheredge, Harriet; Hurrell, Tracey; Kanji, Comfort Ropafadzo; Kapungu, Nyasha Nicole; Maher, Heather; Mthembu, Busisiwe; Naidoo, Jerolen; Scholefield, Janine; Rambarran, Sharan; van der Schyff, Francisca; Smyth, Natalie; Strobele, Bernd; Thelingwani, Roslyn Stella; Loveland, Jerome; Fabian, June.
Afiliação
  • Masimirembwa C; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Ramsay M; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Botha J; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Ellis E; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Etheredge H; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Hurrell T; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Kanji CR; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Kapungu NN; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Maher H; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Mthembu B; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Naidoo J; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Scholefield J; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Rambarran S; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • van der Schyff F; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Smyth N; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Strobele B; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Thelingwani RS; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Loveland J; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
  • Fabian J; African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gor
Drug Metab Dispos ; 51(12): 1551-1560, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37751997
ABSTRACT
Pharmaceutical companies subject all new molecular entities to a series of in vitro metabolic characterizations that guide the selection and/or design of compounds predicted to have favorable pharmacokinetic properties in humans. Current drug metabolism research is based on liver tissue predominantly obtained from people of European origin, with limited access to tissue from people of African origin. Given the interindividual and interpopulation genomic variability in genes encoding drug-metabolizing enzymes, efficacy and safety of some drugs are poorly predicted for African populations. To address this gap, we have established the first comprehensive liver tissue biorepository inclusive of people of African origin. The African Liver Tissue Biorepository Consortium currently includes three institutions in South Africa and one in Zimbabwe, with plans to expand to other African countries. The program has collected 67 liver samples as of July 2023. DNA from the donors was genotyped for 120 variants in 46 pharmacogenes and revealed variants that are uniquely found in African populations, including the low-activity, African-specific CYP2C9*5 and *8 variants relevant to the metabolism of diclofenac. Larger liver tissue samples were used to isolate primary human hepatocytes. Viability of the hepatocytes and microsomal fractions was demonstrated by the activity of selected cytochrome P450s. This resource will be used to ensure the safety and efficacy of existing and new drugs in African populations. This will be done by characterizing compounds for properties such as drug clearance, metabolite and enzyme identification, and drug-drug and drug-gene interactions. SIGNIFICANCE STATEMENT Standard optimization of the drug metabolism of new molecular entities in the pharmaceutical industry uses subcellular fractions such as microsomes and isolated primary hepatocytes, being done mainly with tissue from donors of European origin. Pharmacogenetics research has shown that variants in genes coding for drug-metabolizing enzymes have interindividual and interpopulation differences. We established an African liver tissue biorepository that will be useful in ensuring drug discovery and development research takes into account drug responses in people of African origin.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Farmacogenética / Sistema Enzimático do Citocromo P-450 Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Farmacogenética / Sistema Enzimático do Citocromo P-450 Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article