Your browser doesn't support javascript.
loading
Twist family BHLH transcription factor 1 is required for the maintenance of leukemia stem cell in MLL-AF9+ acute myeloid leukemia.
Wang, Nan; Yin, Jing; You, Na; Zhu, Wenqi; Guo, Nini; Liu, Xiaoyan; Zhang, Peiwen; Huang, Wanling; Xie, Yueqiao; Ren, Qian; Ma, Xiaotong.
Afiliação
  • Wang N; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Yin J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • You N; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Zhu W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Guo N; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Liu X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Zhang P; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Huang W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Xie Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Ren Q; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
  • Ma X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of
Haematologica ; 109(1): 84-97, 2024 Jan 01.
Article em En | MEDLINE | ID: mdl-37767575
ABSTRACT
Leukemia stem cells (LSC) are a rare population capable of limitless self-renewal and are responsible for the initiation, maintenance, and relapse of leukemia. Elucidation of the mechanisms underlying the regulation of LSC function could provide novel treatment strategies. Here, we show that TWIST1 is extremely highly expressed in the LSC of MLL-AF9+ acute myeloid leukemia (AML), and its upregulation is positively regulated by KDM4C in a H3K9me3 demethylation-dependent manner. We further demonstrate that TWIST1 is essential for the viability, dormancy, and self-renewal capacities of LSC, and that it promotes the initiation and maintenance of MLL-AF9-mediated AML. In addition, TWIST1 directly interacts and collaborates with HOXA9 in inducing AML in mice. Mechanistically, TWIST1 exerts its oncogenic function by activating the WNT5a/RAC1 axis. Collectively, our study uncovers a critical role of TWIST1 in LSC function and provides new mechanistic insights into the pathogenesis of MLL-AF9+ AML.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Proteína 1 Relacionada a Twist Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Proteína 1 Relacionada a Twist Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article