Your browser doesn't support javascript.
loading
Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery.
Kaveti, Rajaram; Lee, Joong Hoon; Youn, Joong Kee; Jang, Tae-Min; Han, Won Bae; Yang, Seung Min; Shin, Jeong-Woong; Ko, Gwan-Jin; Kim, Dong-Je; Han, Sungkeun; Kang, Heeseok; Bandodkar, Amay J; Kim, Hyun-Young; Hwang, Suk-Won.
Afiliação
  • Kaveti R; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Lee JH; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Youn JK; SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea.
  • Jang TM; Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
  • Han WB; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Yang SM; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Shin JW; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Ko GJ; Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea.
  • Kim DJ; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Han S; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Kang H; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Bandodkar AJ; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Kim HY; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Hwang SW; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
Adv Mater ; 36(11): e2307391, 2024 Mar.
Article em En | MEDLINE | ID: mdl-37770105
ABSTRACT
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Absorvíveis / Hérnia Abdominal Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Absorvíveis / Hérnia Abdominal Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article