Your browser doesn't support javascript.
loading
Molecular van der Waals Fluids in Cavity Quantum Electrodynamics.
Philbin, John P; Haugland, Tor S; Ghosh, Tushar K; Ronca, Enrico; Chen, Ming; Narang, Prineha; Koch, Henrik.
Afiliação
  • Philbin JP; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
  • Haugland TS; College of Letters and Science, University of California, Los Angeles, California 90095, United States.
  • Ghosh TK; Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
  • Ronca E; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Chen M; Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
  • Narang P; Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
  • Koch H; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
J Phys Chem Lett ; 14(40): 8988-8993, 2023 Oct 12.
Article em En | MEDLINE | ID: mdl-37774379
Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light-matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R-3 and R0. Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H2 to 144 H2 molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light-matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article