Your browser doesn't support javascript.
loading
The Effects of 16-HETE Enantiomers on Hypertrophic Markers in Human Fetal Ventricular Cardiomyocytes, RL-14 Cells.
Hidayat, Rahmat; El-Ghiaty, Mahmoud A; Shoieb, Sherif M; Alqahtani, Mohammed A; El-Kadi, Ayman O S.
Afiliação
  • Hidayat R; Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
  • El-Ghiaty MA; Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
  • Shoieb SM; Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
  • Alqahtani MA; Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
  • El-Kadi AOS; Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. aelkadi@ualberta.ca.
Eur J Drug Metab Pharmacokinet ; 48(6): 709-722, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37815672
BACKGROUND: Cytochrome P450 (CYP) metabolizes arachidonic acid to produce bioactive metabolites such as EETs and HETEs: mid-chain, subterminal, and terminal HETEs. Recent studies have revealed the role of CYP1B1 and its associated cardiotoxic mid-chain HETE metabolites in developing cardiac hypertrophy and heart failure. Subterminal HETEs have also been involved in various physiological and pathophysiological processes; however, their role in cardiac hypertrophy has not been fully defined. OBJECTIVE: The objective of the current study is to determine the possible effect of subterminal HETEs, R and S enantiomers of 16-HETE, on CYP1B1 expression in vitro using human cardiomyocytes RL-14 cells. METHODS: In the study, RL14 cell line was treated with vehicle and either of the 16-HETE enantiomers for 24 h. Subsequently, the following markers were assessed: cell viability, cellular size, hypertrophic markers, CYP1B1 gene expression (at mRNA, protein, and activity levels), luciferase activity, and CYP1B1 mRNA and protein half-lives. RESULTS: The results of the study showed that 16-HETE enantiomers significantly increased hypertrophic markers and upregulated CYP1B1 mRNA and protein expressions in RL-14 cell line. The upregulation of CYP1B1 by 16-HETE enantiomers occurs via a transcriptional mechanism as evidenced by transcriptional induction and luciferase reporter assay. Furthermore, neither post-transcriptional nor post-translational modification was involved in such modulation since there was no change in CYP1B1 mRNA and protein stabilities upon treatment with 16-HETE enantiomers. CONCLUSION: The current study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 gene expression through a transcriptional mechanism.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Hidroxieicosatetraenoicos / Miócitos Cardíacos Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Hidroxieicosatetraenoicos / Miócitos Cardíacos Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article