Your browser doesn't support javascript.
loading
Schizophrenia-Like Behaviors Arising from Dysregulated Proline Metabolism Are Associated with Altered Neuronal Morphology and Function in Mice with Hippocampal PRODH Deficiency.
Yao, Yuxiao; Jin, Chenchen; Liao, Yilie; Huang, Xiang; Wei, Ziying; Zhang, Yahong; Li, Dongwei; Su, Huanxing; Han, Weiping; Qin, Dajiang.
Afiliação
  • Yao Y; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
  • Jin C; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
  • Liao Y; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
  • Huang X; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Wei Z; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
  • Zhang Y; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
  • Li D; Guangzhou Laboratory, Guangzhou, Guangdong, China.
  • Su H; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
  • Han W; Institute of Chinese Medical Sciences, University of Macau, Macau, China.
  • Qin D; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
Aging Dis ; 2023 Sep 25.
Article em En | MEDLINE | ID: mdl-37815900
ABSTRACT
Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV- mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article