Your browser doesn't support javascript.
loading
Tumor Stimulus-Activatable Pretheranostic Agent: One Key to Three Locks.
Zhang, Yize; Ni, Yingyong; Zhao, Xuan; Wang, Ting; Zhu, Xiaojiao; Sun, Xianshun; Wang, Sen; Li, Dandan; Wang, Junjun; Zhou, Hongping.
Afiliação
  • Zhang Y; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Ni Y; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Zhao X; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Wang T; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Zhu X; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Sun X; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Wang S; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Li D; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Wang J; School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
  • Zhou H; School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Educati
Anal Chem ; 95(42): 15636-15644, 2023 10 24.
Article em En | MEDLINE | ID: mdl-37824749
ABSTRACT
The uncontrollable distribution of antitumor agents remains a large obstacle for specific and efficient cancer theranostics; thus, efficient construction of tumor-specific systems is highly desirable. In this work, a general design of tumor stimulus-activatable pretheranostic agents was put forward via a series of structures-tunable triphenylamine derivatives (TPA-2T-FSQ, TPA-2T-BSZ, and TPA-2T-ML) with phenothiazine, benzothiazine, and thiomorpholine as identifying groups of hypochlorite (HClO), respectively. Notably, the sulfur atom in phenothiazine of TPA-2T-FSQ was more easily oxidized to sulfoxide groups by HClO, transforming into an electron acceptor to form an excellent push-pull electronic system, which was beneficial to a large redshift of absorbance and emission wavelengths. Based on this, TPA-2T-FSQ resorted to a key of overexpressed HClO in the tumor to open "three locks", viz, NIR fluorescence, photothermal, and photoacoustic signals for multimodal diagnostic and treatment of the tumor. This study provided an elegant design to adopt tumor stimulus-triggerable pretheranostic for improving theranostic accuracy and efficiency, which was regarded as a promising candidate for precision medicine.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article