Your browser doesn't support javascript.
loading
Robust, scalable, and informative clustering for diverse biological networks.
Gaiteri, Chris; Connell, David R; Sultan, Faraz A; Iatrou, Artemis; Ng, Bernard; Szymanski, Boleslaw K; Zhang, Ada; Tasaki, Shinya.
Afiliação
  • Gaiteri C; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA. gaiteri@gmail.com.
  • Connell DR; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA. gaiteri@gmail.com.
  • Sultan FA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA. gaiteri@gmail.com.
  • Iatrou A; Rush University Graduate College, Rush University Medical Center, Chicago, IL, USA.
  • Ng B; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
  • Szymanski BK; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
  • Zhang A; Department of Psychiatry, McLean Hospital, Harvard Medical School, Harvard University, Belmont, MA, USA.
  • Tasaki S; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
Genome Biol ; 24(1): 228, 2023 10 12.
Article em En | MEDLINE | ID: mdl-37828545
Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorithms across thousands of synthetic and real biological datasets, including a new consensus clustering algorithm-SpeakEasy2: Champagne. These tests identify trends in performance, show no single method is universally optimal, and allow us to examine factors behind variation in performance. Multiple metrics indicate SpeakEasy2 generally provides robust, scalable, and informative clusters for a range of applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2023 Tipo de documento: Article