Your browser doesn't support javascript.
loading
Application potential of biofertilizer-assisted Pennisetum giganteum in safe utilization of mercury-contaminated paddy fields.
Zhou, Xian; Lei, Bangxing; Yin, Deliang; Kang, Jichuan; He, Zhangjiang; He, Tianrong; Xu, Xiaohang.
Afiliação
  • Zhou X; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environme
  • Lei B; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
  • Yin D; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environme
  • Kang J; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China. Electronic address: jckang@gzu.edu
  • He Z; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
  • He T; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
  • Xu X; Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
J Environ Manage ; 348: 119291, 2023 Dec 15.
Article em En | MEDLINE | ID: mdl-37832289
ABSTRACT
High mercury (Hg) bioaccumulation in crops such as rice in Hg-contaminated areas presents a potential health hazard to humans and wildlife. To develop a safe alternative technique, bacillus-inoculated biofertilizer, citric acid, earthworms, and selenium-modified activated clay were compared for their ability to regulate Hg bioaccumulation in Pennisetum giganteum (P. giganteum). This biofertilizer significantly increased Bacillus sp. abundance in the soil by 157.12%, resulting in the removal of 27.52% of water-soluble Hg fractions through volatilization and adsorption mechanisms. The variation in bioavailable Hg in the soil significantly reduced the total Hg concentration in P. giganteum young leaves, old leaves, stems, and roots of P. giganteum by 74.14%, 48.08%, 93.72%, and 50.91%, respectively (p < 0.05), which is lower than the Chinese feed safety standard (100 ng g-1). The biofertilizer inhibitory potential was highly consistent with that of the selenium-modified activated clay. Biofertilizers significantly reduced the methylmercury concentration in various P. giganteum tissues (p < 0.05), whereas selenium-modified activated clay failed to achieve a comparable effect. This biofertilizer-assisted planting pattern can achieve an economic income quadruple that of the rice planting pattern in the Hg-contaminated paddy fields. Because of its significant environmental and financial applications, the biofertilizer-assisted planting pattern is expected to replace Hg-contaminated paddy fields.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Selênio / Poluentes do Solo / Pennisetum / Mercúrio Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Selênio / Poluentes do Solo / Pennisetum / Mercúrio Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article