Your browser doesn't support javascript.
loading
Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging.
Cha, Bo Kyung; Lee, Youngjin; Kim, Kyuseok.
Afiliação
  • Cha BK; Precision Medical Device Research Center, Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si 15588, Gyeonggi-do, Republic of Korea.
  • Lee Y; Department of Radiological Science, College of Health Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
  • Kim K; Department of Biomedical Engineering, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si 13135, Gyeonggi-do, Republic of Korea.
Sensors (Basel) ; 23(19)2023 Sep 30.
Article em En | MEDLINE | ID: mdl-37837015
An indirect conversion X-ray detector uses a scintillator that utilizes the proportionality of the intensity of incident radiation to the amount of visible light emitted. A thicker scintillator reduces the patient's dose while decreasing the sharpness. A thin scintillator has an advantage in terms of sharpness; however, its noise component increases. Thus, the proposed method converts the spatial resolution of radiographic images acquired from a normal-thickness scintillation detector into a thin-thickness scintillation detector. Note that noise amplification and artifacts were minimized as much as possible after non-blind deconvolution. To accomplish this, the proposed algorithm estimates the optimal point-spread function (PSF) when the structural similarity index (SSIM) and feature similarity index (FSIM) are the most similar between thick and thin scintillator images. Simulation and experimental results demonstrate the viability of the proposed method. Moreover, the deconvolution images obtained using the proposed scheme show an effective image restoration method in terms of the human visible system compared to that of the traditional PSF measurement technique. Consequently, the proposed method is useful for restoring degraded images using the adaptive PSF while preventing noise amplification and artifacts and is effective in improving the image quality in the present X-ray imaging system.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article