Your browser doesn't support javascript.
loading
Time Domain Near-Infrared Optical Tomography Utilizing Full Temporal Data: A Simulation Study.
Lanini, Letizia; Kalyanov, Alexander; Ackermann, Meret; Russomanno, Emanuele; Mata, Aldo Di Costanzo; Wolf, Martin; Jiang, Jingjing.
Afiliação
  • Lanini L; Department of Physics, ETH Zürich, Zürich, Switzerland. laninil@student.ethz.ch.
  • Kalyanov A; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland. laninil@student.ethz.ch.
  • Ackermann M; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
  • Russomanno E; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
  • Mata ADC; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
  • Wolf M; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
  • Jiang J; Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
Adv Exp Med Biol ; 1438: 173-178, 2023.
Article em En | MEDLINE | ID: mdl-37845457
The analysis of full temporal data in time-domain near-infrared optical tomography (TD NIROT) measurements enables valuable information to be obtained about tissue properties with good temporal and spatial resolution. However, the large amount of data obtained is not easy to handle in the image reconstruction. The goal of the project is to employ full-temporal data from a TD NIROT modality. We improved TD data-based 3D image reconstruction and compared the performance with other methods using frequency domain (FD) and temporal moments. The iterative reconstruction algorithm was evaluated in simulations with both noiseless and noisy in-silico data. In the noiseless cases, a superior image quality was achieved by the reconstruction using full temporal data, especially when dealing with inclusions at 20 mm and deeper in the tissue. When noise similar to measured data was present, the quality of the recovered image from full temporal data was no longer superior to the one obtained from the analysis of FD data and temporal moments. This indicates that denoising methods for TD data should be developed. In conclusion, TD data contain richer information and yield better image quality.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X / Tomografia Óptica Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X / Tomografia Óptica Idioma: En Ano de publicação: 2023 Tipo de documento: Article