Your browser doesn't support javascript.
loading
Thermally Responsive Selenide-containing Materials Based on Transalkylation of Selenonium Salts.
Chen, Sisi; Scholiers, Vincent; Zhang, Mengyao; Zhang, Jiandong; Zhu, Jian; Prez, Filip E Du; Pan, Xiangqiang.
Afiliação
  • Chen S; State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow Uni
  • Scholiers V; Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium.
  • Zhang M; Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium.
  • Zhang J; State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow Uni
  • Zhu J; State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow Uni
  • Prez FED; State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow Uni
  • Pan X; Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium.
Angew Chem Int Ed Engl ; 62(49): e202309652, 2023 Dec 04.
Article em En | MEDLINE | ID: mdl-37851486
ABSTRACT
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C-Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article