SGLT2 and DPP4 inhibitors improve Alzheimer's disease-like pathology and cognitive function through distinct mechanisms in a T2D-AD mouse model.
Biomed Pharmacother
; 168: 115755, 2023 Dec.
Article
em En
| MEDLINE
| ID: mdl-37871560
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) share common features, including insulin resistance. Brain insulin resistance has been implicated as a key factor in the pathogenesis of AD. Recent studies have demonstrated that anti-diabetic drugs sodium-glucose cotransporter-2 inhibitor (SGLT2-i) and dipeptidyl peptidase-4 inhibitor (DPP4-i) improve insulin sensitivity and provide neuroprotection. However, the effects of these two inhibitors on the brain metabolism and insulin resistance remain uninvestigated. We developed a T2D-AD mouse model using a high-fat diet (HFD) for 19 weeks along with a single dose of streptozotocin (100 mg/kg, intraperitoneally) at the fourth week of HFD initiation. Subsequently, the animals were treated with SGLT2-i (empagliflozin, 25 mg/kg/day orally [p.o.]) and DPP4-i (sitagliptin, 100 mg/kg/day p.o.) for 7 weeks. Subsequently, behavioral tests were performed, and the expression of insulin signaling, AD-related, and other signaling pathway proteins in the brain were examined. T2D-AD mice not only showed increased blood glucose levels and body weight but also insulin resistance. SGLT2-i and DPP4-i effectively ameliorated insulin sensitivity and reduced body weight in these mice. Furthermore, SGLT2-i and DPP4-i significantly improved hippocampal-dependent learning, memory, and cognitive functions in the T2D-AD mouse model. Interestingly, SGLT2-i and DPP4-i reduced the hyperphosphorylated tau (pTau) levels and amyloid ß (Aß) accumulation and enhanced brain insulin signaling. SGLT2-i reduced pTau accumulation through the angiotensin converting enzyme-2/angiotensin (1-7)/ mitochondrial assembly receptor axis, whereas DPP4-i reduced Aß accumulation by increasing insulin-degrading enzyme levels. These findings suggest that SGLT2-i and DPP4-i prevent AD-like pathology and cognitive dysfunction in T2D mice potentially through affecting brain insulin signaling via different mechanisms.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Resistência à Insulina
/
Diabetes Mellitus Tipo 2
/
Inibidores da Dipeptidil Peptidase IV
/
Doença de Alzheimer
/
Inibidores do Transportador 2 de Sódio-Glicose
Limite:
Animals
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article