Your browser doesn't support javascript.
loading
The response of Dual-Leucine Zipper Kinase (DLK) to nocodazole: evidence for a homeostatic cytoskeletal repair mechanism.
bioRxiv ; 2023 Oct 31.
Article em En | MEDLINE | ID: mdl-37873434
Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that a) low dose nocodazole treatment activates DLK signaling and b) DLK signaling mitigates the microtubule damage caused by the cytoskeletal perturbation. We also perform RNA-seq to discover a DLK-dependent transcriptional signature. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes and promoting actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article