Your browser doesn't support javascript.
loading
Screen-printed interdigitated microelectrodes employment in dielectrophoretic manipulation of MWCNTs.
Olariu, Marius Andrei; Filip, Tudor Alexandru; Peptu, Catalina Anisoara; Turcan, Ina.
Afiliação
  • Olariu MA; Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Profesor Dimitrie Mangeron Blvd., 700050, Iasi, Romania.
  • Filip TA; Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Profesor Dimitrie Mangeron Blvd., 700050, Iasi, Romania.
  • Peptu CA; Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi" Technical University of Iasi, 71, Prof. Dr. Docent Dimitrie Mangeron Street, 700050, Iasi, Romania.
  • Turcan I; Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Profesor Dimitrie Mangeron Blvd., 700050, Iasi, Romania. ina.turcan@yahoo.com.
Mikrochim Acta ; 190(11): 453, 2023 Oct 26.
Article em En | MEDLINE | ID: mdl-37882907
As key enablers of Industry 4.0 and Internet of Things, sensors are among the first devices which are to encounter fast physical transformation (from rigid to flexible) as of large-scale utilization of printing technologies. In order to step-up this process, adaptation of conventional fabrication technologies (based on metallization) employed in sensors' development should be tested and demonstrated. Within this paper, we are reporting the functionality of dielectrophoresis (DEP) for electromanipulation of multi-walled carbon nanotubes (MWCNTs) as sensing element, at the level of printed interdigitated electrodes. First, we present the flatbed screen-printed process of interdigitated microelectrodes on flexible substrate with tailored geometries employed afterwards for generating convenient dielectrophoretic forces of optimal magnitude and frequency for trapping MWCNTs. Successful dielectrophoresis operability of MWCNTs across silver-based screen-printed µIDE (interdigitated microelectrodes) provided with electrode gaps of ≈ 150 µm was validated and suitable values of the signal frequencies for avoiding parasitic electrokinetic phenomena (AC electro-osmosis, electrothermal effect) occurring simultaneously with DEP were identified. Time-dependent effect of DEP over MWCNTs bridges formation is discussed, as well as voltage magnitude contribution.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article