Your browser doesn't support javascript.
loading
Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation.
La, Van N T; Minh, David D L.
Afiliação
  • La VNT; Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA.
  • Minh DDL; Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article em En | MEDLINE | ID: mdl-37894754
We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Incerteza Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Incerteza Idioma: En Ano de publicação: 2023 Tipo de documento: Article