Your browser doesn't support javascript.
loading
Novel strategy for treating high salinity oilfield produced water: Pyrite-activated peroxymonosulfate coupled with heterotrophic ammonia assimilation.
Zhao, Chuanfu; Lei, Jianhua; Han, Fei; Jiao, Tong; Han, Yufei; Zhou, Weizhi.
Afiliação
  • Zhao C; School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China.
  • Lei J; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China.
  • Han F; School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China.
  • Jiao T; School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China.
  • Han Y; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China.
  • Zhou W; School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China. Electronic address: wzzhou@sdu.edu.cn.
Water Res ; 247: 120772, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37898003
ABSTRACT
Existing conventional biological treatment techniques face numerous limitations in effectively removing total petroleum hydrocarbons (TPHs) and ammonia (NH4+-N) from oilfield-produced water (OPW), highlighting the pressing need for innovative pre-oxidation and biological treatment processes. In this study, a pyrite-activated peroxymonosulfate (PMS)-coupled heterotrophic ammonia assimilation (HAA) system was established to achieve satisfactory system performance for OPW treatment. Pyrite sustained-release Fe2+-activated PMS was used to produce SO4•- and •OH, and 71.0 % of TPHs were effectively removed from the oil wastewater. The average TPHs and NH4+-N removal efficiencies in the test group with pre-oxidation were 96.9 and 98.3 %, compared to 46.5 and 77.1 % in the control group, respectively. The maximum fluorescence intensities of tryptophan protein and aromatic protein in the test group declined by 83.7 %. Fourier transform ion cyclotron resonance mass spectrometry revealed that pre-oxidation degraded more long-chain hydrocarbons and aromatic family compound, whereas the HAA process produced more proteins and carbohydrates. Pyrite-PMS promoted the enrichment of ammonia-assimilating bacteria, alleviating the explosive increase in extracellular polymeric substances and reducing sludge settleability. The low cost, efficiency, green chemistry principles, and synergies of this approach make it a powerful solution for practical OPW treatment to reduce environmental impacts and promote sustainable wastewater treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Petróleo / Amônia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Petróleo / Amônia Idioma: En Ano de publicação: 2023 Tipo de documento: Article