Your browser doesn't support javascript.
loading
Engineered Recombinant EGFP-Azurin Theranostic Nanosystem for Targeted Therapy of Prostate Cancer.
Bhardwaj, Ritu; Mishra, Prashant.
Afiliação
  • Bhardwaj R; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
  • Mishra P; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
Mol Pharm ; 20(12): 6066-6078, 2023 Dec 04.
Article em En | MEDLINE | ID: mdl-37906960
Erythropoietin-producing hepatocellular (Eph) receptors and their ligands, ephrins, are the largest subfamily of receptor tyrosine kinases (RTKs) that have emerged as a new class of cancer biomarkers due to their aberrant expression in cancer progression. The activation of Eph receptors either due to their hyperexpression or via high affinity binding with their respective ephrin ligands initiates a cascade of signals that impacts cancer development and progression. In prostate cancer, the overexpression of the EphA6 receptor has been correlated with increased metastatic potential. Azurin, a small redox protein, is known to prevent tumor progression by binding to cell surface Eph receptors, inhibiting its autophosphorylation in the kinase domain and thereby disrupting Eph-ephrin signaling. Hence, a self-assembled, theranostic nanosystem of recombinant fusion protein his6EGFP-azu (80-128) was designed by conjugating enhanced green fluorescent protein (EGFP) with the C-terminal region of azurin. This design was inspired by the in silico binding study, where the analogue of ephrinA, his6EGFP-azu (80-128) showed higher binding affinity for the EphA6 receptor than the ephrinA ligands. The his6EGFP-azu (80-128) nanosystem which assembled as nanoparticles was tested for its ability to simultaneously detect and kill the prostate cancer cells, LNCaP. This was achieved by specifically targeting EphA6 receptors overexpressed on the cancer cell surface via C-terminal peptide, azu (80-128). Herein, we report antiproliferative, apoptotic, antimigratory, and anti-invasive effects of this nanosystem on LNCaP cells, while having no similar effects on EphA6 negative human normal lung cells, WI-38.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Azurina / Receptor EphA6 Limite: Humans / Male Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Azurina / Receptor EphA6 Limite: Humans / Male Idioma: En Ano de publicação: 2023 Tipo de documento: Article