Your browser doesn't support javascript.
loading
ZundEig: The Structure of the Proton in Liquid Water from Unsupervised Learning.
Di Pino, Solana; Donkor, Edward Danquah; Sánchez, Veronica M; Rodriguez, Alex; Cassone, Giuseppe; Scherlis, Damian; Hassanali, Ali.
Afiliação
  • Di Pino S; Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
  • Donkor ED; International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy.
  • Sánchez VM; Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
  • Rodriguez A; Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
  • Cassone G; International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy.
  • Scherlis D; Dipartimento di Matematica e Geoscienze, Universitá degli Studi di Trieste, via Alfonso Valerio 12/1, 34127 Trieste, Italy.
  • Hassanali A; Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), Viale Stagno d'Alcontres 37, 98158 Messina, Italy.
J Phys Chem B ; 127(45): 9822-9832, 2023 Nov 16.
Article em En | MEDLINE | ID: mdl-37930954
ABSTRACT
The structure of the excess proton in liquid water has been the subject of lively debate on both experimental and theoretical fronts for the last century. Fluctuations of the proton are typically interpreted in terms of limiting states referred to as the Eigen and Zundel species. Here, we put these ideas under the microscope, taking advantage of recent advances in unsupervised learning that use local atomic descriptors to characterize environments of acidic water combined with advanced clustering techniques. Our agnostic approach leads to the observation of only one charged cluster and two neutral ones. We demonstrate that the charged cluster involving the excess proton is best seen as an ionic topological defect in water's hydrogen bond network, forming a single local minimum on the global free-energy landscape. This charged defect is a highly fluxional moiety, where the idealized Eigen and Zundel species are neither limiting configurations nor distinct thermodynamic states. Instead, the ionic defect enhances the presence of neutral water defects through strong interactions with the network. We dub the combination of the charged and neutral defect clusters as ZundEig, demonstrating that the fluctuations between these local environments provide a general framework for rationalizing more descriptive notions of the proton in the existing literature.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article