Your browser doesn't support javascript.
loading
Manipulating the Host-Guest Chemistry of Cucurbituril to Propel Highly Reversible Zinc Metal Anodes.
Zhao, Yiming; Wei, Mengying; Tan, Li-Li; Luo, Zhixuan; Peng, Jiahui; Wei, Chunguang; Kang, Feiyu; Wang, Jian-Gan.
Afiliação
  • Zhao Y; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
  • Wei M; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
  • Tan LL; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
  • Luo Z; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
  • Peng J; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
  • Wei C; Shenzhen Cubic-Science Co., Ltd., Shenzhen, 518052, China.
  • Kang F; Engineering Laboratory for Functionalized Carbon Materials and Shenzhen Key Laboratory for Graphene-Based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
  • Wang JG; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
Small ; 20(13): e2308164, 2024 Mar.
Article em En | MEDLINE | ID: mdl-37948426
ABSTRACT
Rechargeable aqueous zinc-ion batteries are practically plagued by the short lifespan and low Coulombic efficiency (CE) of Zn anodes resulting from random dendrite deposition and parasitic reactions. Herein, the host-guest chemistry of cucurbituril additive with Zn2+ to achieve longstanding Zn anodes is manipulated. The macrocyclic molecule of cucurbit[5]uril (CB[5]) is delicately designed to reconstruct both the CB[5]-adsorbed electric-double layer (EDL) structure at the Zn interface and the hydrated sheath of Zn2+ ions. Especially benefiting from the desirable carbonyl rims and suitable hydrophobic cavities, the CB[5] has a strong host-guest interaction with Zn2+ ions, which exclusively permits rapid Zn2+ flux across the EDL interface but retards the H2O radicals and SO4 2-. Accordingly, such a unique particle redistributor warrants long-lasting dendrite-free deposition by homogenizing Zn nucleation/growth and significantly improved CE by inhibiting side reactions. The Zn anode can deliver superior reversibility in CB[5]-containing electrolyte with a ninefold increase of cycle lifetime and an elevated CE of 99.7% under harsh test conditions (10 mA cm-2/10 mA h cm-2). The work opens a new avenue from the perspective of host-guest chemistry to propel the development of rechargeable Zn metal batteries and beyond.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article