Your browser doesn't support javascript.
loading
Ligand 1 H NMR Chemical Shifts as Accurate Reporters for Protein-Ligand Binding Interfaces in Solution.
Platzer, Gerald; Ptaszek, Aleksandra L; Böttcher, Jark; Fuchs, Julian E; Geist, Leonhard; Braun, Daniel; McConnell, Darryl B; Konrat, Robert; Sánchez-Murcia, Pedro A; Mayer, Moriz.
Afiliação
  • Platzer G; Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria.
  • Ptaszek AL; MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030-, Vienna, Austria.
  • Böttcher J; Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria.
  • Fuchs JE; Laboratory for Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University Graz, Neue Stiftingtalstrasse 6/III, 8010-, Graz, Austria.
  • Geist L; Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria.
  • Braun D; Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria.
  • McConnell DB; Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria.
  • Konrat R; Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria.
  • Sánchez-Murcia PA; Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria.
  • Mayer M; Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria.
Chemphyschem ; 25(1): e202300636, 2024 Jan 02.
Article em En | MEDLINE | ID: mdl-37955910
The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Proteínas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Proteínas Idioma: En Ano de publicação: 2024 Tipo de documento: Article