Your browser doesn't support javascript.
loading
Multifunctional hydrogel for synergistic reoxygenation and chemo/photothermal therapy in metastatic breast cancer recurrence and wound infection.
Chen, Jing; Zhang, Xinyi; Zhang, Jinshen; Wang, Zhaoxia; Zhu, Guilan; Geng, Ming; Zhu, Jinmiao; Chen, Yajun; Wang, Wei; Xu, Youcui.
Afiliação
  • Chen J; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Zhang X; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China.
  • Zhang J; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China.
  • Wang Z; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Zhu G; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Geng M; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Zhu J; School of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China.
  • Chen Y; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Wang W; School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, PR China; Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, Anhui 230601, PR China; Green Food Rural Revitalization Collaborative Technology Service Center of A
  • Xu Y; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China. Electronic address: xuyoucui@mail.ustc.edu.cn.
J Control Release ; 365: 74-88, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37972761
Metastatic recurrence and postoperative wound infection are two major challenges for breast cancer patients. In this study, a multifunctional responsive hydrogel system was developed for synergistic reoxygenation and chemo/photothermal therapy in metastatic breast cancer and wound infection. The hydrogel system was obtained by cross-linking Prussian blue-modified N-carboxyethyl chitosan (PBCEC) and oxidized sodium alginate using the amino and aldehyde groups on the polysaccharides, resulting in the formation of responsive dynamic imine bonds. Conditioned stimulation (e.g., acid microenvironment) enabled the controlled swelling of hydrogels as well as subsequent slow release of loaded doxorubicin (DOX). Additionally, this hydrogel system decomposed endogenous reactive oxygen species into oxygen to relieve the hypoxic tumor microenvironment and promote the healing of infected-wounds. Both in vitro and in vivo experiments demonstrated the synergistic reoxygenation and chemo/photothermal effects of the PB/DOX hydrogel system against metastatic breast cancer and its recurrence, as well as postoperative wound infection. Thus, the combination of reoxygenation and chemo/photothermal therapy represents a novel strategy for treating and preventing tumor recurrence and associated wound infection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Hipertermia Induzida Limite: Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Hipertermia Induzida Limite: Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article