Decoding the Pathway-Dependent Self-Assembly of Polymer-Grafted Nanoparticles by Ligand Crystallization.
Small
; 20(14): e2306671, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-37992245
Functional metamaterials can be constructed by assembling nanoparticles (NPs) into well-ordered structures, which show fascinating properties at different length scales. Using polymer-grafted NPs (PGNPs) as a building block, flexible composite metamaterials can be obtained, of which the structure is significantly affected by the property of polymer ligands. Here, it is demonstrated that the crystallization of polymer ligands determines the assembly behavior of NPs and reveal a pathway-dependent self-assembly of PGNPs into different metastructures in solution. By changing the crystallization degree of polymer ligands, the arrangement structure of NPs can be tailored. When the polymer ligands highly crystallize, the PGNPs assemble into diamond-shaped platelets, in which the NPs arrange disorderedly. When the polymer ligands lowly crystallize, the PGNPs assemble into highly ordered 3D superlattices, in which the NPs pack into a body-centered-cubic structure. The structure transformation of PGNP assemblies can be achieved by thermal annealing to regulate the crystallization of polymer ligands. Interestingly, the diamond-shaped platelets remain "living" for seeded epitaxial growth of newly added crystalline species. This work demonstrates the effects of ligand crystallization on the crystallization of NP, providing new insights into the structure regulation of metamaterials.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article