Your browser doesn't support javascript.
loading
DNA-Based Gold Nanoparticle Assemblies: From Structure Constructions to Sensing Applications.
Xie, Mo; Jiang, Jinke; Chao, Jie.
Afiliação
  • Xie M; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
  • Jiang J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
  • Chao J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Sensors (Basel) ; 23(22)2023 Nov 16.
Article em En | MEDLINE | ID: mdl-38005617
ABSTRACT
Gold nanoparticles (Au NPs) have become one of the building blocks for superior assembly and device fabrication due to the intrinsic, tunable physical properties of nanoparticles. With the development of DNA nanotechnology, gold nanoparticles are organized in a highly precise and controllable way under the mediation of DNA, achieving programmability and specificity unmatched by other ligands. The successful construction of abundant gold nanoparticle assembly structures has also given rise to the fabrication of a wide range of sensors, which has greatly contributed to the development of the sensing field. In this review, we focus on the progress in the DNA-mediated assembly of Au NPs and their application in sensing in the past five years. Firstly, we highlight the strategies used for the orderly organization of Au NPs with DNA. Then, we describe the DNA-based assembly of Au NPs for sensing applications and representative research therein. Finally, we summarize the advantages of DNA nanotechnology in assembling complex Au NPs and outline the challenges and limitations in constructing complex gold nanoparticle assembly structures with tailored functionalities.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Idioma: En Ano de publicação: 2023 Tipo de documento: Article