Your browser doesn't support javascript.
loading
Genomics-informed conservation units reveal spatial variation in climate vulnerability in a migratory bird.
Miller, Caitlin V; Bossu, Christen M; Sarraco, James F; Toews, David P L; Rushing, Clark S; Roberto-Charron, Amélie; Tremblay, Junior A; Chandler, Richard B; DeSaix, Matthew G; Fiss, Cameron J; Larkin, Jeff L; Haché, Samuel; Nebel, Silke; Ruegg, Kristen C.
Afiliação
  • Miller CV; Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
  • Bossu CM; Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
  • Sarraco JF; The Institute for Bird Populations, Petaluma, California, USA.
  • Toews DPL; Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA.
  • Rushing CS; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA.
  • Roberto-Charron A; Department of Environment, Government of Nunavut, Iqaluit, Canada.
  • Tremblay JA; Wildlife Research Division, Environment and Climate Change Canada, Québec, Quebec, Canada.
  • Chandler RB; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA.
  • DeSaix MG; Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
  • Fiss CJ; Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA.
  • Larkin JL; Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA.
  • Haché S; Canadian Wildlife Service, Environment Climate Change Canada, Yellowknife, Northwest Territories, Canada.
  • Nebel S; Birds Canada, Port Rowan, Ontario, Canada.
  • Ruegg KC; Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Mol Ecol ; 33(1): e17199, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38018020
ABSTRACT
Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene-environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Passeriformes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Passeriformes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article