Your browser doesn't support javascript.
loading
Biochar application for the remediation of soil contaminated with potentially toxic elements: Current situation and challenges.
Wu, Yi; Yan, Yuhang; Wang, Zongwei; Tan, Zhongxin; Zhou, Tuo.
Afiliação
  • Wu Y; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agr
  • Yan Y; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agr
  • Wang Z; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agr
  • Tan Z; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agr
  • Zhou T; China State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China.
J Environ Manage ; 351: 119775, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38070425
ABSTRACT
Recently, biochar has garnered extensive attention in the remediation of soils contaminated with potentially toxic elements (PTEs) owing to its exceptional adsorption properties and straightforward operation. Most researchers have primarily concentrated on the effects, mechanisms, impact factors, and risks of biochar in remediation of PTEs. However, concerns about the long-term safety and impact of biochar have restricted its application. This review aims to establish a basis for the large-scale popularization of biochar for remediating PTEs-contaminated soil based on a review of interactive mechanisms between soil, PTEs and biochar, as well as the current situation of biochar for remediation in PTEs scenarios. Biochar can directly interact with PTEs or indirectly with soil components, influencing the bioavailability, mobility, and toxicity of PTEs. The efficacy of biochar in remediation varies depending on biomass feedstock, pyrolysis temperature, type of PTEs, and application rate. Compared to pristine biochar, modified biochar offers feasible solutions for tailoring specialized biochar suited to specific PTEs-contaminated soil. Main challenges limiting the applications of biochar are overdose and potential risks. The used biochar is separated from the soil that not only actually removes PTEs, but also mitigates the negative long-term effects of biochar. A sustainable remediation technology is advocated that enables the recovery and regeneration (95.0-95.6%) of biochar from the soil and the removal of PTEs (the removal rate of Cd is more than 20%) from the soil. Finally, future research directions are suggested to augment the environmental safety of biochar and promote its wider application.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Metais Pesados / Recuperação e Remediação Ambiental Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Metais Pesados / Recuperação e Remediação Ambiental Idioma: En Ano de publicação: 2024 Tipo de documento: Article