Your browser doesn't support javascript.
loading
Controllable Solid Electrolyte Interphase by Ionic Environment Regulation for Stable Zn-Ion Battery.
Liu, Jingwen; Li, Caixia; Zhang, Kai; Zhang, Shenghao; Zhang, Chao; Yang, Yu; Wang, Lei.
Afiliação
  • Liu J; State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Li C; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Zhang K; State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Zhang S; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Zhang C; State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Yang Y; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Wang L; State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Small ; : e2309057, 2023 Dec 10.
Article em En | MEDLINE | ID: mdl-38072772
Artificial solid electrolyte interphase in organic solutions is effective and facile for long-cycling aqueous zinc ion batteries. However, the specific effects on different ionic environments have not been thoroughly investigated. Herein, pyromellitic acid (PA) are employed as organic ligand to coordinate with Zn2+ under various ionic environments. The connection between the ionic environment and reaction spontaneity is analyzed to provide insights into the reasons behind the effectiveness of the SEI layer and to characterize its protective impact on the zinc anode. Notably, the PA solution (pH4) lacking OH- contributes to the formation of a dense and ultrathin SEI with Zn-PA coordination, preventing direct contact between the anode and electrolyte. Moreover, the presence of organic functional groups facilitates a uniform flux of Zn2+ . These advantages enable stable cycling of the PA4-Zn symmetric cell at a current density of 3 mA cm-2 for over 3500 h. The PA4-Zn//MVO full cell demonstrates excellent electrochemical reversibility. Investigating the influence of the ionic environment on SEI generation informs the development of novel SEI strategies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article