Your browser doesn't support javascript.
loading
Two new bibenzyl methylglucosides as SIRT3 activators obtained through microbial transformation.
Wang, Yue; Fu, Wei-Cheng; Peng, Yu; Zhang, Ying-Lu; Chen, Jing-Jing; Chen, Tian-Jiao; Yang, Jin-Ling; Gong, Ting; Zhu, Ping.
Afiliação
  • Wang Y; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Fu WC; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Peng Y; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Zhang YL; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Chen JJ; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Chen TJ; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Yang JL; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Gong T; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
  • Zhu P; State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical Col
J Asian Nat Prod Res ; 26(2): 269-279, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38078645
ABSTRACT
Microbial transformation of dihydroresveratrol (DHRSV) using Beauveria bassiana has produced two new methylglucosylated derivatives of DHRSV (1 and 2), whose structures were characterized as 4'-O-(4″-O-methyl-ß-D-glucopyranosyl)-dihydroresveratrol (4'-O-MG DHRSV, 1) and 3-O-(4″-O-methyl-ß-D-glucopyranosyl)-dihydroresveratrol (3-O-MG DHRSV, 2) on the basis of spectroscopic methods. They showed moderate SIRT3 agonistic activity, and compound 2 exhibited the best deacetylation of 406.63% at 10 µM. The activity of 2 increased by 3.12-fold compared with that of DHRSV, since 2 performed better in molecular docking assay (GScore -8.445).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estilbenos / Bibenzilas / Sirtuína 3 Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estilbenos / Bibenzilas / Sirtuína 3 Idioma: En Ano de publicação: 2024 Tipo de documento: Article