Your browser doesn't support javascript.
loading
Ellagic acid treatment during in vitro maturation of porcine oocytes improves development competence after parthenogenetic activation and somatic cell nuclear transfer.
Lee, Han-Bi; Lee, Seung-Eun; Park, Min-Jee; Han, Dong-Hun; Lim, Eun-Seo; Ryu, Bokyeong; Kim, Eun-Young; Park, Se-Pill.
Afiliação
  • Lee HB; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Ko
  • Lee SE; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea.
  • Park MJ; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea.
  • Han DH; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Ko
  • Lim ES; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Ko
  • Ryu B; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 632
  • Kim EY; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Ko
  • Park SP; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 632
Theriogenology ; 215: 214-223, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38100993
ABSTRACT
Ellagic acid (EA) is a natural polyphenol and a free radical scavenger with antioxidant properties. This study investigated the protective effects of EA during in vitro maturation (IVM) of porcine oocytes. To determine the optimal concentration, IVM medium was supplemented with various concentrations of EA. Treatment with 10 µM EA (10 EA) resulted in the highest cleavage rate, blastocyst formation rate, and total cell number per blastocyst and the lowest percentage of apoptotic cell in parthenogenetic blastocysts. In the 10 EA group, abnormal spindle and chromosome misalignment were rescued and the ratio of phosphorylated p44/42 to total p44/42 was increased. Furthermore, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, and antioxidant genes (Nrf2, HO-1, CAT, and SOD1) were significantly upregulated in the 10 EA group. mRNA expression of developmental-related (CDX2, POU5F1, and SOX2) and anti-apoptotic (BCL2L1) genes was significantly upregulated in the 10 EA group, while mRNA expression of pro-apoptotic genes (BAK, FAS, and CASP3) was significantly downregulated. Ultimately, following somatic cell nuclear transfer, the blastocyst formation rate was significantly increased and the percentage of apoptotic cell in blastocysts was significantly decreased in the 10 EA group. In conclusion, addition of 10 EA to IVM medium improved oocyte maturation and the subsequent embryo development capacity through antioxidant mechanisms. These findings suggest that EA can enhance the efficiencies of assisted reproductive technologies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Elágico / Antioxidantes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Elágico / Antioxidantes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article