Your browser doesn't support javascript.
loading
Fingolimod exerts neuroprotection by regulating S1PR1 mediated BNIP3-PINK1-Parkin dependent mitophagy in rotenone induced mouse model of Parkinson's disease.
Rajan, Shruti; Sood, Anika; Jain, Rachit; Kamatham, Pushpa Tryphena; Khatri, Dharmendra Kumar.
Afiliação
  • Rajan S; Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
  • Sood A; Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
  • Jain R; Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
  • Kamatham PT; Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
  • Khatri DK; Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India. Electronic address: dkkhatri10@gmail.com.
Neurosci Lett ; 820: 137596, 2024 Jan 18.
Article em En | MEDLINE | ID: mdl-38101611
ABSTRACT
The motor impairments brought on by the loss of dopaminergic neurons in the substantia nigra are the most well-known symptoms of Parkinson's disease (PD). It is believed that dopaminergic neurons are especially vulnerable to mitochondrial malfunction. For the maintenance of mitochondrial integrity, selective autophagic removal of dysfunctional mitochondria via mitophagy primarily regulated by PINK1/Parkin pathway is essential. Moreover, newer studies also implicate the role of phospholipid metabolism, such as that of Sphingosine-1-phosphate (S1P) as a contributor to PD. S1P receptors have been reported to influence mitochondrial function in neurodegenerative diseases. Fingolimod (FTY720), an S1P receptor-1 modulator has been proven effective in PD but its regulation of mitophagy in PD is still elusive. In this study, the neuroprotective effect of FTY720 by modulating mitophagy, has been explored against rotenone (ROT) induced neurotoxicity in in-vivo. The animals were randomly divided into 5 groups namely, Normal Control (NC); Disease control (DC) ROT (1.5 mg/kg); Low dose (LD) ROT + FTY720 (0.5 mg/kg); High dose (HD) ROT + FTY720 (1 mg/kg) and Vehicle control (VC) 1 % DMSO. ROT was administered through i.p. and FTY720 through p.o. for 21 days. At the end of the study, various neurobehavioral studies (rotarod test and actimeter), western blot techniques, and immunofluorescence studies were performed. FTY720 restored the neurobehavioural functions and protein expression of PINK1, Parkin and BNIP3 in ROT-induced PD mice. The results obtained in our study suggest that FTY720 has a neuroprotective effect in ROT-induced mice model of PD via PINK1-Parkin mediated mitophagy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Fármacos Neuroprotetores Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Fármacos Neuroprotetores Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article