Your browser doesn't support javascript.
loading
Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases.
Isshiki, Takuma; Naiel, Safaa; Vierhout, Megan; Otsubo, Kohei; Ali, Pareesa; Tsubouchi, Kazuya; Yazdanshenas, Parichehr; Kumaran, Vaishnavi; Dvorkin-Gheva, Anna; Kolb, Martin R J; Ask, Kjetil.
Afiliação
  • Isshiki T; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Naiel S; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Vierhout M; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Otsubo K; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
  • Ali P; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Tsubouchi K; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
  • Yazdanshenas P; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Kumaran V; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
  • Dvorkin-Gheva A; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
  • Kolb MRJ; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.
  • Ask K; Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Can
Pharmacol Ther ; 253: 108578, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38103794
ABSTRACT
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-ß. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar Idiopática / Fator de Crescimento do Tecido Conjuntivo Tipo de estudo: Systematic_reviews Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar Idiopática / Fator de Crescimento do Tecido Conjuntivo Tipo de estudo: Systematic_reviews Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article