Your browser doesn't support javascript.
loading
Integrated transcriptomics and metabolomics reveal the toxic mechanisms of mercury exposure to an endangered species Tachypleus tridentatus.
Xie, Mujiao; Bao, Yuyuan; Xie, Xiaoyong; Ying, Ziwei; Ye, Guoling; Li, Chunhou; Guo, Qingyang; Zhang, Wanling; Luo, Zimeng.
Afiliação
  • Xie M; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Bao Y; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Xie X; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Ying Z; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Ye G; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Li C; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Guo Q; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Zhang W; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
  • Luo Z; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300,
Environ Toxicol Pharmacol ; 105: 104345, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38103811
ABSTRACT
Mercury (Hg) pollution is threatening the health of endangered Tachypleus tridentatus whereas the toxic mechanism is still unclear. This study combined transcriptomic and metabolomics technology to reveal the toxic mechanisms of mercury (Hg 2+, 0.025 mg/L) exposing to T. tridentatus larvae for 15 days. Mercury induced cellular toxicity and cardiovascular dysfunction by dysregulating the genes related to endocrine system, such as polyubiquitin-A, cathepsin B, atrial natriuretic peptide, etc. Mercury induced lipid metabolic disorder with the abnormal increase of lysoPC, leukotriene D4, and prostaglandin E2. Cytochrome P450 pathway was activated to produce anti-inflammatory substances to reconstruct the homeostasis. Mercury also inhibited arginine generation, which may affect the development of T. tridentatus by disrupting the crucial signaling pathway. The mercury methylation caused enhancement of S-adenosylmethionine to meet the need of methyl donor. The mechanisms described in present study provide new insight into the risk assessment of mercury exposure to T. tridentatus.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Caranguejos Ferradura / Mercúrio Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Caranguejos Ferradura / Mercúrio Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article