Your browser doesn't support javascript.
loading
Novel 2 Gene Signatures Associated With Breast Cancer Proliferation: Insights From Predictive Differential Gene Expression Analysis.
Ibrahim, Asmaa; Toss, Michael S; Alsaleem, Mansour; Makhlouf, Shorouk; Atallah, Nehal; Green, Andrew R; Rakha, Emad A.
Afiliação
  • Ibrahim A; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, Faculty of Medicine, Suez Canal University, Egypt.
  • Toss MS; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom.
  • Alsaleem M; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia.
  • Makhlouf S; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Assiut University, Egypt.
  • Atallah N; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, Faculty of Medicine, Menoufia University, Egypt.
  • Green AR; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom.
  • Rakha EA; Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, School of Medicine, University of Nottingham, United Kingdom; Department of Pathology, Hamad Medical Corporat
Mod Pathol ; 37(2): 100403, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38104894
ABSTRACT
The use of proliferation markers provides valuable information about the rate of tumor growth, which can guide treatment decisions. However, there is still a lack of consensus regarding the optimal molecular markers or tests to use in clinical practice. Integrating gene expression data with clinical and histopathologic parameters enhances our understanding of disease processes, facilitates the identification of precise prognostic predictors, and supports the development of effective therapeutic strategies. The purpose of this study was to apply an integrated approach that combines morphologic, clinical, and bioinformatic data to reveal effective regulators of proliferation. Whole-slide images generated from hematoxylin-and-eosin-stained sections of The Cancer Genome Atlas (TCGA) breast cancer (BC) database (n = 1053) alongside their transcriptomic and clinical data were used to identify genes differentially expressed between tumors with high and low mitotic scores. Genes enriched in the cell-cycle pathway were used to predict the protein-protein interaction (PPI) network. Ten hub genes (ORC6, SKP2, SMC1B, CDKN2A, CDC25B, E2F1, E2F2, ORC1, PTTG1, and CDC25A) were identified using CytoHubba a Cytoscape plugin. In a multivariate Cox regression model, ORC6 and SKP2 were predictors of survival independent of existing methods of proliferation assessment including mitotic score and Ki67. The prognostic ability of these genes was validated using the Molecular Taxonomy of Breast Cancer International Consortium, Nottingham cohort, Uppsala cohort, and a combined multicentric cohort. The protein expression of these 2 genes was investigated on a large cohort of BC cases, and they were significantly associated with poor prognosis and patient outcome. A positive correlation between ORC6 and SKP2 mRNA and protein expression was observed. Our study has identified 2 gene signatures, ORC6 and SKP2, which play a significant role in BC proliferation. These genes surpassed both mitotic scores and Ki67 in multivariate analysis. Their identification provides potential opportunities for the development of targeted treatments for patients with BC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Limite: Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Limite: Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article