Your browser doesn't support javascript.
loading
A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons.
Turner, Chris D; Stuhr, Nicole L; Ramos, Carmen M; Van Camp, Bennett T; Curran, Sean P.
Afiliação
  • Turner CD; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.
  • Stuhr NL; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089.
  • Ramos CM; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.
  • Van Camp BT; Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089.
  • Curran SP; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.
Proc Natl Acad Sci U S A ; 120(52): e2308565120, 2023 Dec 26.
Article em En | MEDLINE | ID: mdl-38113255
ABSTRACT
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas de Caenorhabditis elegans Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas de Caenorhabditis elegans Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article