Cove-Edged Chiral Graphene Nanoribbons with Chirality-Dependent Bandgap and Carrier Mobility.
J Am Chem Soc
; 146(1): 1026-1034, 2024 Jan 10.
Article
em En
| MEDLINE
| ID: mdl-38117539
ABSTRACT
Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of â¼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of â¼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article