Your browser doesn't support javascript.
loading
Loss of mitochondrial adaptation associates with deterioration of mitochondrial turnover and structure in metabolic dysfunction-associated steatotic liver disease.
Sarabhai, Theresia; Kahl, Sabine; Gancheva, Sofiya; Mastrototaro, Lucia; Dewidar, Bedair; Pesta, Dominik; Ratter-Rieck, Jacqueline M; Bobrov, Pavel; Jeruschke, Kay; Esposito, Irene; Schlensak, Matthias; Roden, Michael.
Afiliação
  • Sarabhai T; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; Germ
  • Kahl S; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; Germ
  • Gancheva S; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; Germ
  • Mastrototaro L; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
  • Dewidar B; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
  • Pesta D; Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
  • Ratter-Rieck JM; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
  • Bobrov P; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany.
  • Jeruschke K; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
  • Esposito I; Institute of Pathology, University Hospital and Heinrich-Heine-University, Düsseldorf, Germany.
  • Schlensak M; Department of Obesity and Reflux Center, Neuwerk Hospital Mönchengladbach, Germany.
  • Roden M; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; Germ
Metabolism ; 151: 155762, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38122893
ABSTRACT

BACKGROUND:

Obesity and type 2 diabetes frequently have metabolic dysfunction-associated steatotic liver disease (MASLD) including steatohepatitis (MASH). In obesity, the liver may adapt its oxidative capacity, but the role of mitochondrial turnover in MASLD remains uncertain.

METHODS:

This cross-sectional study compared individuals with class III obesity (n = 8/group) without (control, OBE CON; NAFLD activity score 0.4 ± 0.1) or with steatosis (OBE MASL, 2.3 ± 0.4), or MASH (OBE MASH, 5.3 ± 0.3, p < 0.05 vs. other groups). Hepatic mitochondrial ultrastructure was assessed by transmission electron microscopy, mitochondrial respiration by high-resolution respirometry, biomarkers of mitochondrial quality control and endoplasmic reticulum (ER) stress by Western Blot.

RESULTS:

Mitochondrial oxidative capacity was 31 % higher in OBE MASL, but 25 % lower in OBE MASH (p < 0.05 vs. OBE CON). OBE MASH showed ~1.5fold lower mitochondrial number, but ~1.2-1.5fold higher diameter and area (p < 0.001 vs. other groups). Biomarkers of autophagy (p62), mitophagy (PINK1, PARKIN), fission (DRP-1, FIS1) and fusion (MFN1/2, OPA1) were reduced in OBE MASH (p < 0.05 vs. OBE CON). OBE MASL showed lower p62, p-PARKIN/PARKIN, and p-DRP-1 (p < 0.05 vs. OBE CON). OBE MASL and MASH showed higher ER stress markers (PERK, ATF4, p-eIF2α-S51/eIF2α; p < 0.05 vs. OBE CON). Mitochondrial diameter associated inversely with fusion/fission biomarkers and with oxidative capacity, but positively with H2O2.

CONCLUSION:

Humans with hepatic steatosis already exhibit impaired mitochondrial turnover, despite upregulated oxidative capacity, and evidence for ER stress. In MASH, oxidative stress likely mediates progressive decline of mitochondrial turnover, ultrastructure and respiration indicating that mitochondrial quality control is key for energy metabolism and may have potential for targeting MASH. ClinGovTrialNCT01477957.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Fígado Gorduroso / Hepatopatia Gordurosa não Alcoólica Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Fígado Gorduroso / Hepatopatia Gordurosa não Alcoólica Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article